Risk hull method and regularization by projections of ill-posed inverse problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk Hull Method and Regularization by Projections of Ill - Posed Inverse Problems

We study a standard method of regularization by projections of the linear inverse problem Y = Af + ǫ, where ǫ is a white Gaussian noise, and A is a known compact operator with singular values converging to zero with polynomial decay. The unknown function f is recovered by a projection method using the singular value decomposition of A. The bandwidth choice of this projection regularization is g...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

Learning, Regularization and Ill-Posed Inverse Problems

Many works have shown that strong connections relate learning from examples to regularization techniques for ill-posed inverse problems. Nevertheless by now there was no formal evidence neither that learning from examples could be seen as an inverse problem nor that theoretical results in learning theory could be independently derived using tools from regularization theory. In this paper we pro...

متن کامل

Global Saturation of Regularization Methods for Inverse Ill-Posed Problems

In this article the concept of saturation of an arbitrary regularization method is formalized based upon the original idea of saturation for spectral regularization methods introduced by Neubauer [5]. Necessary and sufficient conditions for a regularization method to have global saturation are provided. It is shown that for a method to have global saturation the total error must be optimal in t...

متن کامل

Regularization Techniques for Ill-posed Inverse Problems in Data Assimilation

Optimal state estimation from given observations of a dynamical system by data assimilation is generally an ill-posed inverse problem. In order to solve the problem, a standard Tikhonov, or L2 , regularization is used, based on certain statistical assumptions on the errors in the data. The regularization term constrains the estimate of the state to remain close to a prior estimate. In the prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2006

ISSN: 0090-5364

DOI: 10.1214/009053606000000542